Integrating PICO principles into generative artificial intelligence prompt engineering to enhance information retrieval for medical librarians
DOI:
https://doi.org/10.5195/jmla.2025.2022Keywords:
PICO, Generative Artificial Intelligence, Prompt Engineering, Information RetrievalAbstract
Prompt engineering, an emergent discipline at the intersection of Generative Artificial Intelligence (GAI), library science, and user experience design, presents an opportunity to enhance the quality and precision of information retrieval. An innovative approach applies the widely understood PICO framework, traditionally used in evidence-based medicine, to the art of prompt engineering. This approach is illustrated using the “Task, Context, Example, Persona, Format, Tone” (TCEPFT) prompt framework as an example. TCEPFT lends itself to a systematic methodology by incorporating elements of task specificity, contextual relevance, pertinent examples, personalization, formatting, and tonal appropriateness in a prompt design tailored to the desired outcome. Frameworks like TCEPFT offer substantial opportunities for librarians and information professionals to streamline prompt engineering and refine iterative processes. This practice can help information professionals produce consistent and high-quality outputs. Library professionals must embrace a renewed curiosity and develop expertise in prompt engineering to stay ahead in the digital information landscape and maintain their position at the forefront of the sector.
References
Arnold M, Goldschmitt M, Rigotti T. Dealing with information overload: a comprehensive review. Front Psychol. 2023 Jun;14:1122200. DOI: 10.3389/fpsyg.2023.1122200.
Kalankesh LR, Nasiry Z, Fein RA, Damanabi S. Factors Influencing User Satisfaction with Information Systems: A Systematic Review. Galen. 2020;9:e1686. DOI:10.31661/gmj.v9i0.1686.
Research planning and review committee, ACRL. 2024 Top Trends in Academic Libraries: A Review of the Trends and Issues [Internet]. [cited 12 Jun 2024]. https://crln.acrl.org/index.php/crlnews/article/view/26379.
De Paor S, Heravi B. Information literacy and fake news: How the field of librarianship can help combat the epidemic of fake news. J Acad Librariansh. 2020;46(5):102218. DOI:10.1016/j.acalib.2020.102218.
Feuerriegel S, Hartmann J, Janiesch C, Zschech P. Generative AI. Bus Inf Syst Eng. 2024;66(1):111-126. DOI:10.1007/s12599-023-00834-7.
Witty F. The pínakes of callimachus. Libr Q. 1958;28(2):132-136. DOI:10.1086/618523.
Avram H. Machine-Readable Cataloging (MARC) Program. Encyclopedia of Library and Information Science. 2003:1712-1730. DOI: 10.1081/E-ELIS 120008993.
Hussain A. Industrial revolution 4.0: implication to libraries and librarians. Library Hi Tech News. 2020;37(1):1-5. DOI.org/10.1108/LHTN-05-2019-0033.
Fui-Hoon Nah F, Zheng R, Cai J, Siau K, Chen L. Generative AI and ChatGPT: Applications, challenges, and AI-human collaboration. Journal of Information Technology Case and Application Research. 2023;25(3):277-304. DOI:10.1080/15228053.2023.2233814.
Viswanath K. Three Things to Know About Prompting LLMs [Internet]. MIT Sloan Management Review. [cited 11 Jun 2024]. https://sloanreview.mit.edu/article/three-things-to-know-about-prompting-llms/.
Lo LS. The CLEAR path: A framework for enhancing information literacy through prompt engineering. The Journal of Academic Librarianship. 2023;49(4):102720. DOI:10.1016/j.acalib.2023.102720.
Khan R, Gupta N, Sinhababu A, Chakravarty R. Impact of conversational and generative AI systems on libraries: A use case large language model (LLM). Sci Technol Libr. 2023:1-15. DOI:10.1080/0194262X.2023.2254814.
Tufail S, Riggs H, Tariq M, Sarwat AI. Advancements and challenges in machine learning: A comprehensive review of models, libraries, applications, and algorithms. Electronics. 2023;12(8):1789. DOI:10.3390/electronics12081789.
Fitch K. Searching for Meaning Rather Than Keywords and Returning Answers Rather Than Links [Internet]. Code4Lib Journal. 2023;(57). https://journal.code4lib.org/articles/17443.
Nadkarni PM, Ohno-Machado L, Chapman WW. Natural language processing: an introduction. J Am Med Inform Assoc. 2011;18(5):544-551. DOI:10.1136/amiajnl-2011-000464.
Kiania K, Jameii SM, Rahmani AM. Blockchain-based privacy and security preserving in electronic health: a systematic review. Multimed Tools Appl. 2023:1-27. DOI:10.1007/s11042-023-14488-w.
Eriksen MB, Frandsen TF. The impact of patient, intervention, comparison, outcome (PICO) as a search strategy tool on literature search quality: a systematic review. J Med Libr Assoc. 2018;106(4):420-431. DOI:10.5195/jmla.2018.345.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Kyle Robinson, Karen Bontekoe, Joanne Muellenbach

This work is licensed under a Creative Commons Attribution 4.0 International License.